附件: 各獎項得獎人主要事蹟

研究傑出獎				
		吳誠文教授致力於半導體記憶體測試及晶片設計領域。吳教授不僅		
吳誠文		自身發表了許多開創性的記憶體最佳測試演算法、各種記憶體測		
	工研院協理	試、診斷、修復等重要研究技術,三次獲得國科會傑出研究獎等重		
		要獎項肯定,甚至帶領其團隊不斷產出重要技術成果,對產學業的		
	國立成功大學	貢獻非凡。像是帶領學生開發出先進的記憶體測試演算法產生器		
	講座教授兼副校長	(稱為 TAGS),找出目前為止全世界最短的 RAM 測試演算法;擔		
		任工研院系統晶片中心主任時,帶領團隊完成國內首顆 WiMAX 基		
		頻 SOC 及 RF 晶片,促成國內產業順利進到 4G-LTE 市場等。		
張耀文		張耀文教授投身於電子設計自動化等多項研究領域,其團隊與國內		
		外 20 多家公司合作,張教授研究成果豐碩,被多家公司及業界採		
	國立臺灣大學	用,與尖端產業產生長期良性互動,帶動產業的發展,對產業有深		
	特聘教授兼電機資	遠和實質的影響力。		
	13 15 X D X 电极负 訊學院院長	張教授在研究、服務和教學方面創造多項全球、亞洲及台灣第一的		
	마무인에	紀錄,獲得多項國際和台灣頂尖研究大獎的肯定,為全球最重要		
		EDA 學會首位非歐美的最高領導人,也是台灣近 20 年來第二位		
		IEEE 專業學(society/council)的總裁。		
		鄭教授為國際知名學者,也是超大規模集成電路測試及設計驗證的		
		權威·其學術研究具有深遠的影響力·多項專利發明被應用於 IC		
		設計產業中。鄭教授在電子設計自動化、移動計算機視覺、多媒體		
鄭光廷	香港科技大學	電腦運算等領域上貢獻卓越,研發多項技術為高效晶片及軟性電路		
AP/UE	工學院院長	之設計驗證及製程測試提供低成本、高品質的解決方案。其重要研		
		究傑出貢獻包括高效能電子系統之可測試性設計及延遲測試、功能		
		性驗證之邏輯等效性檢查、以及名為"Pseudo-CMOS"的低功耗可		
		靠軟性電路設計型式,已成為目前最常用的軟性電路設計型式。		
年輕研究創新獎				
張書維		張創辦人暨董事長主要研究領域為毫米波和次毫米波前端射頻系		
		統、毫米波 IC (MMIC)設計及超低溫電子電路設計。所創辦之稜研		
	稜研科技股份有限	科技成功研發許多創新的關鍵技術,如開發全球首套毫米波射頻開		
	公司	發套件—BBox、獨家毫米波升降頻模組等,成功解決毫米波新產		
	創辦人暨董事長	業技術之困難點,獲得多項毫米波應用相關的專利,已獲得法國、		
		日本、中國等大廠合作,並設計開發整合人工智慧 AI 以及邊緣運		
		算的 AiP 模組。		
羅文甫	醫盟科技股份有限	醫盟科技為從臨床需求出發的專業醫療器材研發及行銷企業,聚焦		
	公司	於臨床常見之盲刺穿刺定位困境。與國內外醫師共同開發 EpiFaith		

	±1 /— —			
	執行長	穿刺定位裝置,透過感測壓力之視覺指引,使得針頭能精準定位,		
		降低無痛分娩、中央靜脈插管等醫療時之失敗率,除了避免病人受		
		後遺症所擾、亦大幅降低醫療體系不必要之支出。羅執行長將其所		
		學機械工程之知識,運用於開發醫療器材上,並與供應商及國外醫		
		師洽談合作案,成功取得美國及歐盟醫療器材許可證,目前已被國		
		際知名醫院使用。		
李正宇		李共同創辦人致力於研發更精準、更快速的液態樣本檢測,應用於		
		觀測半導體、電化學、奈米研磨、鋰電池等領域。邑流微測提出高		
	邑流微測股份有限	解析度液態樣品奈米檢測的全方位解決方案,突破產業技術瓶頸,		
	公司	解決過去製程檢測只能以單一固態乾式檢驗方式進行檢測,無法觀		
	共同創辦人	測潮濕特性樣品與活體的問題。積體電路製程繁複,必須使用液體		
		或揮發性材料,邑流微測為全球唯一可提供高解析度液態樣品奈米		
		檢測的全方位解決方案(Flow AOI)供應商。		
	鉅怡智慧股份有限 公司 共同創辦人暨行銷 長	鉅怡智慧主要業務為結合人工智慧、深度學習、及影像生理資訊量		
		測等優勢技術,透過一支攝影機,以非接觸方式監測生理資訊,包		
		含心跳、心率變異與血壓。鐘博士為公司共同創辦人並擔任行銷		
鐘孟良		長,不僅參與研發許多開創性的技術,並依據市場的需求,自主研		
		發並提供包括智慧照護、智慧防疫、智慧金融、智慧安防等領域的		
		產業應用服務與解決方案。鉅怡智慧已在金融銀行、健康管理、遠		
		程醫療、防疫部署等相關產業有顯著的成果。		
物聯網創新應用獎				
	國立臺灣大學 生物機電工程學系 特聘教授	江昭皚特聘教授長期深耕於物聯網技術與人工智慧技術之研究,並		
		將研發成果廣泛運用於智慧電網、智慧農業、綠能科技等應用領		
		域,跨領域研究成果傑出。江教授所研發之「以物聯網為基礎之智		
江昭皚		慧電網安全性監測裝置與系統」,係以創新的系統設計概念,發展		
		自主核心技術,適用於連續且長期地監測超高壓輸電線的動態熱容		
		量,可達成增加既有輸電線路之輸電容量,並同時提升輸電線的安		
		全性。此項技術已實際應用於台電公司的超高壓輸電系統,取得優		
		異的商轉成果,未來的產業效益可期。		
林勻蔚		林博士開發 IoT talk 物聯網管理系統改善農業效率,促進農作物商		
		業化,該系統可讓使用者可以快速建立物聯網設備之間的通訊連		
	 國立交通大學	結,大幅縮短物聯網應用開發之時程。林博士將此研究成果授權至		
	助理教授	國內多家企業及多所國內大學,對國內產業與學術界貢獻卓著。林		
		博士參與新創團隊農譯科技公司之成立,智慧農業應用技術成熟,		
		已實際運用於薑黃、白草莓之生產管理,對農業發展有實質助益。		
劉家隆		開創性利用 WiFi/ 4G/5G 電波偵測室內人員活動狀態一心跳、呼吸		
	I			

資通所	 經理
	NIT-I

中止、睡眠品質、跌倒等,與市場上大多使用穿戴感應裝置偵測的方式不同,具有可即時、非接觸式、長時間、每天連續監測的優勢,定位準確度在1公尺內。獲得超過60項各國無線專利,其中電波相關技術簽訂的合作案金額已累積超過新台幣5,000萬元。此技術已應用於台中火力發電廠等多家公司,具高度實際應用價值。